EQUATION OF A LINE

1. Standard form of the equation of a line

An equation of the type : $\mathbf{A x}+\boldsymbol{B y}+\boldsymbol{C}=\boldsymbol{0}$ is called standard form of the

equation of a line.

Properties:

1. If $A=O$, then the equation obtained is $\mathbf{B y}+\boldsymbol{C}=\mathbf{0}$, or $\boldsymbol{y}=\mathbf{-} \mathbf{C} / \mathbf{B}$, which is a line parallel to the x - axis, at a distance $-\mathbf{C} / \boldsymbol{B}$ from the origin.
2. If $\mathrm{B}=\mathrm{O}$, the equation is reduced to $\mathbf{A x}+\boldsymbol{C}=\mathbf{0}$, or $\boldsymbol{x}=\boldsymbol{-} \mathbf{C} / \boldsymbol{A}$ which is a line parallel to the \mathbf{y}-axis, at a distance $-\boldsymbol{C} / \mathbf{A}$ from the origin.
3. If $\boldsymbol{B}=\boldsymbol{0}, \boldsymbol{C}=\mathbf{0}$, the line equation is reduced to the type $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$, or $\boldsymbol{x}=\mathbf{0}$. It corresponds to the y-axis, and it is its equation.
4. If $A=\boldsymbol{0}, C=\boldsymbol{0}$, the line equation is reduced to the type $B \boldsymbol{y}=\boldsymbol{0}$, or $\boldsymbol{y}=\boldsymbol{0}$. The line corresponds to the x -axis and it is its equation.

2. Explicit form of the line equation

The equation $\mathrm{y}=\boldsymbol{k} \boldsymbol{x}+\boldsymbol{b}$, where $\boldsymbol{k}=\boldsymbol{t g} \mathrm{a}$, is called equation of a line in its explicit form (fig. 4).

Fig. 4

The number \boldsymbol{k} is called the slope of the line, and \boldsymbol{b}-the intercept with the y-axis.
Example. Write the line equation for a line that goes through the origin of the coordinate system and is at an angle of 135° with the positive part of the x -axis.
Solution. $\mathrm{n}=0, \mathrm{k}=\operatorname{tg} 135^{\circ}=-1$. So, $\mathrm{y}=-\mathrm{x}$ is the line equation. It is the bisector of the II and IV quadrants.

3.Segment form of the line equation

The line equation in its segment form is:

$$
\frac{x}{a}+\frac{y}{b}=1
$$

where a and \boldsymbol{b} are segment that the line cuts in the x and y axes respectively. (Fig. 5).

Fig. 5

Example. Write the equation of a line if m and n are respectively

$$
\frac{2}{3} \frac{3}{4}
$$

Solution.

$$
\frac{x}{\frac{2}{3}}+\frac{y}{3}-1 ; \frac{3 x}{2}+\frac{4 y}{3}-10 x+3 y-6-0
$$

4. Regular form of the line equation

The regular form of the line equation in its general form is

$$
\frac{A x+B y+C}{ \pm \sqrt{A^{2}+B^{2}}}=0
$$

in which the sign before the square root is the opposite of the sign of the coefficient C .

5. Equation of a line passing through one and two points

The equation of a line passing through a single point $\mathrm{M}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ having a slope \boldsymbol{k} is:

$$
y-y_{1}=k\left(x-x_{1}\right)
$$

The equation of a line that passes through two points $\mathrm{M}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ and $\boldsymbol{M}_{\mathbf{2}}\left(\boldsymbol{x}_{\boldsymbol{2}}, \boldsymbol{y}_{2}\right)$ has the
following form:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Example. Writhe the equation of the line determined by points $A(1,2)$ and $B(5,4)$

Solution.

$$
y-2=\frac{4-2}{5-1}(x-1), y-2=\frac{2}{4}(x-1), y-2=\frac{1}{2}(x-1), 2(y-2)=x-1, x-2 y+3=0
$$

6. Distance of a point to the line

The discance from the point $\mathbf{M}\left(\boldsymbol{x}_{\boldsymbol{o}}, \mathbf{y}_{0}\right)$ to the line $\mathbf{A x}+\boldsymbol{B} \boldsymbol{y}+\boldsymbol{C}=\mathbf{0}$ is calculated with the equation:

$$
d=\left|\frac{A x_{0}+B y_{0}+C}{ \pm \sqrt{A^{2}+B^{2}}}\right|
$$

Example.Determine the distance from the point $\mathrm{M}(4,3)$ to the line

```
                                    2x+y-2=0
```

$d=\frac{2-4+1-3-2}{\sqrt{4^{4}+3^{2}}}=\frac{9}{\sqrt{16+9}}=\frac{9}{\sqrt{25}}=\frac{9}{5}$

7. Angle between two lines

$$
\operatorname{tg} \varphi=\frac{k_{2}-k_{1}}{1+k_{1} k_{2}}
$$

where $\boldsymbol{k}_{\mathbf{1}}$, and $\boldsymbol{k}_{\boldsymbol{2}}$ are the slopes of the lines $\boldsymbol{l}_{\mathbf{1}}$ and $\boldsymbol{l}_{\mathbf{2}}$, respectively.

Fig. 6

From equation (1) the conditions for parallel or perpendicular lines are obtained. So, $\boldsymbol{l}_{\mathbf{1}} \| \boldsymbol{l}_{\mathbf{2}}$,
if $\boldsymbol{k}_{\boldsymbol{2}}=\boldsymbol{k}_{1}, \boldsymbol{l}_{1} \perp \boldsymbol{l}_{2}$ if $\mathbf{1}+\boldsymbol{k}_{1} \boldsymbol{k}_{\mathbf{2}}=\mathbf{0}$

Example. We have the lines
$P_{1}: 5 x-4 y+9-D_{2}, y_{z}: 5 y-4 m x-7-0$.
Determine
such as the lines are parallel.

Solution. We get the equations in explicit form.
$4 y=3 x+8, y=\frac{3}{4} x+2, k_{1}=\frac{3}{4}$
$5 y=4 m x+7, y=\frac{4 m}{5} x+\frac{7}{5}, x_{2}=\frac{43}{5} \quad$. Thus, $\quad \frac{3}{4}=\frac{4 m}{5}, 3-5=4-4 m, 15=16 m, m=\frac{15}{16}$

